Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Security and Communication Networks ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-2103206

ABSTRACT

Predicting and managing the movement of people in a region during epidemics’ outbreak is an important step in preventing outbreaks. The protection of user privacy during the outbreak has become a matter of public concern in recent years, yet deep learning models based on datasets collected from mobile devices may pose privacy and security issues. Therefore, how to develop an accurate crowd flow prediction while preserving privacy is a significant problem to be solved, and there is a tradeoff between these two objectives. In this paper, we propose a privacy-preserving mobility prediction framework via federated learning (CFPF) to solve this problem without significantly sacrificing the prediction performance. In this framework, we designed a deep and embedding learning approach called “Multi-Factors CNN-LSTM” (MFCL) that can help to explicitly learn from human trajectory data (weather, holidays, temperature, and POI) during epidemics. Furthermore, we improve the existing federated learning framework by introducing a clustering algorithm to classify clients with similar spatio-temporal characteristics into the same cluster, and select servers at the center of the cluster as edge central servers to integrate the optimal model for each cluster and improve the prediction accuracy. To address the privacy concerns, we introduce local differential privacy into the FL framework which can facilitate collaborative learning with uploaded gradients from users instead of sharing users’ raw data. Finally, we conduct extensive experiments on a realistic crowd flow dataset to evaluate the performance of our CFPF and make a comparison with other existing models. The experimental results demonstrate that our solution can not only achieve accurate crowd flow prediction but also provide a strong privacy guarantee at the same time.

2.
Anal Chem ; 94(40): 13810-13819, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2050235

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19), the epidemic has been spreading around the world for more than 2 years. Rapid, safe, and on-site detection methods of COVID-19 are in urgent demand for the control of the epidemic. Here, we established an integrated system, which incorporates a machine-learning-based Fourier transform infrared spectroscopy technique for rapid COVID-19 screening and air-plasma-based disinfection modules to prevent potential secondary infections. A partial least-squares discrimination analysis and a convolutional neural network model were built using the collected infrared spectral dataset containing 857 training serum samples. Furthermore, the sensitivity, specificity, and prediction accuracy could all reach over 94% from the results of the field test regarding 968 blind testing samples. Additionally, the disinfection modules achieved an inactivation efficiency of 99.9% for surface and airborne tested bacteria. The proposed system is conducive and promising for point-of-care and on-site COVID-19 screening in the mass population.


Subject(s)
COVID-19 , COVID-19/diagnosis , Humans , Least-Squares Analysis , Neural Networks, Computer , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL